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Abstract-The axisvmmetric free intlation of an initiall, cvlindrical membrane is e:'lamin.:d in tillS
study, The initial thickness and radius distributions are'in genaal non-uniform. The n':I'·Hookean
constitutive model is used. Special attention is focused on the m'n-Iinear bucklinl,: in~;tability under
various inflation and geometrical conditions. It is found that fl'r a given intlation pressure and
aspect ratio S. the thicker the cylinder ends arc. the more unstable the deformation becomes. The
study also shows that for a given aspect ratio there are in general two solutions and that beyond a
maximum S value no solution eltists. In some cases of pressure and thickness values the number of
bulges increases from one in the unstable cylinder prolile as Sis incn:ased hl'yond a certain critical
value. A simihlr phenomenon is observed for a long cylinder when the pressure is increased.
Although the problem is formulated to ,lCcount for non-uniform "f\ginal thl.:kncss and radius
distributions. only results based on linear thi.:kness and radiUS variations arc pr.:s.:nkd.

I. I :"TR()[Jl!("T[():'-;

When a rubher cylindrical shell is inllalcd it hecOllH:s unstabk at a critical maximum
pressure. At this point local bulges may appear in the tuhe without rupture. If the pressure
decn:ases the size of the bulges may still increase. Some of tll\: early investig,ltions were
conducted on an infinite cylinder (Skala. \1J70; Alexalllkr. 11)71; Erwin ('I al.. 19XJ;
Johnson ,lIld Soden. IlJ(6) and a sphere (Green and Adkins. 1%0; Iladdow and Faulkm:r.
IlJ72). In these cases an analytical solution to the halalll.:e equations is easily obtained for
most of the constitutive models commonly used. Skala (1 1)70) correctly predicted the
experimentally ohserved maximum in pre,isure using a neo-Hookean elastic model. AIc.x
ander (1971) also wnsidered the prohlcm of an inlinite cylindrical mcmbrane suhjcct to a
uniform pressure dil1i:renee and an axial load. He showed that tile critil.:;d maximum in
pressure remains constant with respect to the imposed axial load when a lincar constitutivc
model is used and it decreases with increasing axial load when a non-lincar model is used.
While the pressure radius curves hased on hoth the linear and the non·linear analyses SllllW
a maximum. only the non-linear constitutive modellcads to a minimum at a larger radius
confirming experimental observation. In an altemptto simulate the blowing ofpolyethykne
terephthalate (PET) bottles Erwin el al. (19~3) used a functional form of the strain energy
function suggested by Ward (1971). This constitutive modelled to a pressure \ersus radius
behaviour similar to that obtained by Alexander ( 1971). Similar observations arc reached
when a spherical membrane is considered (Green and Adkins. 1960; Haddow and Faulkner.
1972). The case of a confined inlinite cylinder was tackled hy Johnson ,Ind Soden (1%6)
using a neo-Hookean model.

When end eITects are included such as during axisymmetric inl1ation of a linite cylinder
the numerical treatment becomes much less tractable. Although the governing equatiuns in
this case are ordinary diITerential equations and therefore amenahle to standard numerical
solution techniques. the presence of bound'lry conditions on both ends of the cylinder
makes the usc of some kind of a shooting procedure imperative. Convergence is by no
means guaranteed given the high non-linearities in the equations. ~toreover. the presence
of stable and unstable solutions for a given driving pressure ditli:rcnce makes it even more
difficult to obtain a desired solution in one regime or the other. Similar dilliculties are also
encountered in the case of a flat membrane (Yang and Feng. 1970; Feng and Huang. 1972;
Wineman, 1976. 1978; Charrier el al.. \987. 1989). Benedict el al. (1979) considered the
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~imultan.:ous intlation and t:llmgation of a finit.: c: linda subject to an overall axial force.
T II determine the limiting pre~sure for a given .:Iongation ratio they impkment.:d the method
of projected (pn:~~ure) gradient which reduces the scarch from two dimcnsions to lme .
..\It!wugh the mcthod alll)\\s the systematic detamination (11' the maximum in pressure for
a given ~tretch ratil) the probkms inherent to the (one-dim.:nsionall shooting procedure
remain. The special cas.: of lero end forccs was first 501\ed by Kydnoiefs and Spencer
(1909). This problem i~. of course. simpler since only one shooting parameter is invohed.
The numerical difficulties arising in the case ofa cylinder with fixed ends were also anticipated
by Petrie and Ito (19:-;0) in their attempt to solve the problem of inflation ()f a confined
cylinder. Only the special case ofa flat infinite membrane bounded on two sides was actually
considered fl)r calculation. i\lore general discussions on rt:lated numerical treatments can
be fl1und in the following: Endo l'{ al. (19:-;-..). Rib (1972. 1979). Chen and Ji ( 1990). just
t() nanll': ~I fl'W. These attempted to devise numerical schemes capable of locating singular
points (such as the limit point corresponding to the maximum in pressure or other solution
paths in the presence of a bifurcation). Secondary solution paths usually arise for certain
values of the parameter(s) involved. These and related qucstions wcre addressed by
Haughton and Ogden (1979a,b) and Duffett and Reddy (1986) regarding the inflation of
finite thin and thick cylinders. Bifurcating solutions are not explored in the present
paper and. thereforc. will not be discussed any furthl'r.

Most of the investigations mcntioned above dealt with the question of instability and
related numerical dilliculties in one way 0r another. Howcver, actual membranc profiles
were sl'ldlllll determined. The present work attempts to e1ucid~lte further on the conditillns
under which instabilities emerge. Wider ranges of inflation parameters arc considered fllr
various v;i1ues of the aspect ratio and the end thickness llf the tuhe. The formulation
is generalised 10 include non-uniform thickness and radius distrihutions in the original
undcfmmed state. The strain energy functilln used in the calculation is that of thc nco
lIookL';1I1 type (Skala. JlJ70: Kydnoicf~ and Spelll:er. 1969: Petrie and Ito, II)XO). This
mlldel is known to give qualitatively good agreement with experiment and is simple enough
to allllw furtlH:r insight in the non-linear coupling which ariscs in the governing equations.
In fact. comparative studics wac carried out using the neo-Ilookean and Mooney rubher
wnstitutive equations. It was found that in the case of an infinite cylinder (Skala, 1lJ70). for
instance. the Mooney strain function cannot predict the emergence of instahility observed
heyond the maximum pressure and. instead. leads to a pressure rising to an asymptotic
conslant value. On thc other hand. thc case of a finitc cylinder (Kydnoiefs and Spcnccr.
Il)(ll)) showcd that hoth models give rise to a maximum in the pressure but that only the
nco-Ilookean model predicts the occurrcnce of a nearly spherical bulge at the center of the
cylindcr.

:!. I'ROIll.E:'.1 rORMlJL:\TIO~

Consider the axisymmctric dcformation of an clastic isotropic and incomprcssible
circular cylinder of non-uniform radius and thickness. and length 2L" in the undeforrned
state. The thickness is assumed to be much less than any radius of curvature; the cylinder
is thus regardcd <IS a memhrane so that any change in the deformation variahlcs across the
thickncss may he ncglected. Gravity and surface tension dkcts are ncglected. Let V.IV. x')

he the cylindrical polar coordinates in the deformcd configuration with thc x' coordinate
along the cylinder axis. Note that therc is no depcndencc on I{! hecausc of symmetry. The
present notation is similar to that of Petrie and Ito (19S0). The original radius and thickness
distributions r;,(~') and h;.(~') are imposed functions of the axial coordinate ~' in the
undcformcd state. Thus. a material particle currently (after deformation) located at
(,.'.1/1. x') was originally at (r; •• I{!.~'). The memhrane is allowed to stretch up to a preirnposed
length 2L with the ends or the cylinder located at x' = 0 and x' = 2L.

For convenielll'e the growing equations and boundary conditions will he formulated
in terms ()f dimensionless quantities. Let
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x = x'IL.

e= e'IL.
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(I)

where r, is a characteristic radial quantity taken to be the value of the cylinder radius at
the end. Using these quantities the slope in the longitudinal direction becomes

dr- = Stan 0,
dx

(2)

obeing the angle between the tangent at (r. t/I. x) and the x-axis. and S the aspect ratio
given by S = Lir,. The principal stretch ratios..1. 1 and ..1. zare given by

(3)

where .5 = .5'1L is the dimensionless arc length along the deformed membrane, and

(4)

The third principal stretch ratio becomes

(5)

where hand hn are the final and initial membrane thicknesses respectively, non-dimen
siotlalised with respt.'Ct to initial end thickness he. Note that eqn (5) results from the
incompressibility and conservation of mass conditions. Equation (3) m;\y be rewritten as
(petrie and Ito. 1980):

(6)

The constitutive equation used in the present calculations is of the hyperelastic type. For
an incompressible material (I) = I), the strain energy density function can be expressed as

where /1 and /z are the first and second strain invariants. respectively.
In this paper we examine the neo-Hookean model (COl = 0). (Skala, 1970; Johnson

and Soden. 1966: Kydnoiefs and Spencer. 1969; Petrie and lto. 1980.) The choice of this
particular model is bascd on its suitability to account (at least qualitatively) for experimental
observations (Skala. 1970: Kydnoiefs and Spencer. (969). Let T'I and T1denote the forces
per unit length acting in the longitudinal and transverse directions. respectively. The cor
responding dimensionless forms of T'J and T; arc then taken to be

(7)

(8)

Note that T I and Tz are non-dimensionalised with respect to Grc• The conservation equa
tions are well known for the present configuration and therefore will not be covered in
detail. For variable undcformed thickness and radius one obtains from the conservation of
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momentum in the longitudinal and transverse directions the following equations governing
o and i.\:

dO : (,o~. 1 - ;i;)- I~)·~;;~·ii
- = s---.,----
dx i. 1,o 'i;

-- - '--:--l
, , 1'1

di., = Stan fI ( 3,~ ') ,
dx --'-0- i.j,' - 'oi' l + 'oho

(9)

where Rp is an inflation parameter given by

tJ.P'e tJ.I'L
Rp = Gil" = SG-I- ._ 'e ( II )

with tJ.p being the imposed inflation pressure. Although i' l may he expressed. in general, in
terms of the remaining variables as solution to a quartic equation (Kydnoicfs and Spencer.
1969; Petrie and Ito. 19XO) eqn (10) turned out to he more convenient to usc. On the one
hand a quartic equation may possess as many as four possible (real) solutions to select
from; in the case of uniform undeformed radius and thickness distributions one can show
that only one of the four solutions leads to a positive i.\ value (petrie and Ito. 19XO). In the
present case the choice 01'.1 solution branch is I~lr from being obvious. The Jilferential form
given by eqn (10) circumvents this dilliculty since the physical solution hranch is readily
adopted once an appropriate boundary condition on i' l is imposed. On the other hand.
there arc some advantages from the computational standpoint when using eqn (10); these
will be discussed shortly.

Then~ arc four boundary conditions needed for the integrationofeqns (2). (6). (9) and
(10). For the present problem the radii at the two ends of the cylinder arc specified:

,(x = 2) = '>

This latter condition is equivalent to imposing

O(x = I) = O.

( 12)

( 1341)

( 13b)

in case the deformation is symmetric with respect to the pbne perpcnJicular to the cylinder
axis at x = 1. If one end of the cylinder. say at x = O. is assumeJ fixed we huve another
condition. namely

~(x = 0) = O. ( 14)

which states that a particle initially at the left end of the cylinder remains subsequently at
that position. There is a variety of options available for the choice of the fourth boundary
condition (Feng and Huang. 1972; Wineman. 1976; Kydnoiefs and Spencer. 1969). One
may choose to specify the cylinder thickness at the fixed end; this is equivalent to specifying
i·latx=O:
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( ISa)

In this case the stretch ratio (ratio of deformed to undeformed lengths). that is ~(x = 2).
will be determined as solution to eqn (6). This particular choice of boundary condition is
relevant to inflation processes involving stretching and is extensively investigated in the
present work. If a stretch ratio. ~ z. is imposed the fourth boundary condition becomes

~(x = 2) = ~z. (ISb)

A special case of interest is when the two ends of the cylinder are held fixed; in this case
~z = I.

J. SOLUTION PROCEDURE

The governing equations (2). (6). (9) and (10) are ordinary first order and non-linear.
and are solved subject to conditions (12)-( 15). The problem is well-posed and apparently
requires no special effort for its numerical solution. There are difficulties. however. arising
from two major sources. On the one hand. for a given pressure difference or Rp value one
obtains generally two solutions corresponding to stable and unstable deformations (at least
in the context of a neo-Hookean model). Therefore beyond a certain maximum Rp value
there is no solution. Some kind of an iterative scheme may be used such as the method of
projected gradient (Benedict et al.. 1987) to determine the maximum pressure difference
allowed. On the other hand. not all boundary conditions are specified at one end of the
cylinder. for example. at the origin x = O. for an initial-value-problem-typc procedure to
become readily applicable. If powerful methods such as those of Runge-Kutta or Gear arc
to be used. an iterative shooting scheme must simultaneously be implemented. Given the
non-linear character of the governing equations most shooting techniques arc often bound
to fail (sec. for example. Conte and de Boor. 1l)72). Indeed. these methods require an initial
guess for the variahle(s) in question to start the iteration procedure. For a highly non-linear
systcm of equations the guess must hc extremdy close to the actual variahle(s) value(s).
thus rendering the method practically usdess. One way of avoiding the shooting aspect
altogcther is to usc a finite-difference-type approach. In this case the resulting algebraic
(difference) equations governing the discretised variables must be solved simultaneously
over the whole domain of computation with the information from both boundaries readily
incorporated. However. an initial guess for the discretised variables over the whole domain
of calculation is still required to solve the algebraic equations (in this case non-linear) using
an itcrative solver such as that of Newton-Raphson. This. as will be seen bdow. may still
lead to some problems of stability and convergence inherent to difference schemes.

Current calculations show that no single integration scheme works under all inflation
and geometry conditions. The present section aims at elucidating on the different advantages
and limitations of the various methods used in the present context. We now examine
separatdy boundary conditions (15a) and (lSb). Note that conditions (12)-(14) are
assumed always valid. If condition (15'1) is assumed to hold. then for a given aspect ratio
S. inllation parameter Rf, and ;'llI the stretch ratio ~z will be determined as part of the
solution. In this case there is only one shooting condition to consider. namely condition
(13) (a or b) at the outer boundary. Thus. one starts integmting the governing equations
at x = 0 by guessing the value of 0 in an attempt to satisfy condition (13). In principle this
should constitute a straightforward numerical exercise which may be carried out using a
sixth-order Runge-Kutta integration scheme with a modified Newton-Raphson automatic
shooting technique. This latter procedure often failed whenever non-linear effects were
pronounced. that is for large Rp value or in the unstable regime. So a manllal iterative
scheme had to be resorted to with no major difficulty except at very small Rp values.

If the stretch ratio ~ zis imposed then condition (ISb) must hold. The problem becomes
that of a two-dimensional shooting procedure which may be extensively tedious to carry
out manually; the automatic shooting technique also failed in this case. A variable-step
size-tinite-difference procedure was of great assistance in this case despite its initial guess

SAS 29:I-F
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requirement on the distributions of r. e. ~ and ;., as functions of x. Depending on the initial
guess provided the solution may progress towards the stable or unstablt: branch. Even a
marching procedure of updating the initial guess along the pressure-radius curve was not
systematic enough when it came to reaching desired stable or unstable solutions. A more
convenient way which facilitated the guessing procedure was to actually consider the
parameter Rp itself as a dependent variable; in this case we have

dRp
~-=odx . ( 16)

This equation had to be considered together with the set (2). (6). (9) and (10). with the
requirement of one additional boundary condition. namely the mid-cylinder radius Rm :

r(x = I) = Rm . ( 17)

The results reported in the next section were obtained for a cylinder symmetric with respect
to x = I. The tolerance in the calculations was 10 - ~ with an accuracy of up to the third
decimal.

~. :-llfMERICAL RESULTS AND DISCUSSION

Although the governing equations arc formulated to include the cases of non-uniform
original thickness and radius in the undeformed state. the emphasis in this study will be on
results corresponding to uniform original thickness and radius. The non-uniformity in the
original conliguration certainly has an inlluence on the non-linear deformation and deserves
further consideration. Several inflation conditions and geometrical conligurations were
examined:

4.1. C'ilSC I: S = 10. )'10 = 6 illld 1.05
We lirst consider the case of a fixed aspect ratio maintained at S = 10. Two separate

sets of calculations an: carried out for two dillcrent cylinder thicknesses. The results for a
relatively thin cylinder ().11l = 6) arc presented in Figs I, 2 and 3. The inllation parameters
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Fig. I. R.-Rm and 0 1l -Rm curves for S = 10 and ;.", = fo.
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RIO and (~II arc plotted in Fig. I as functions of the mid-cylinder radius Rill' Note that Rill is
not necessarily the maximum radius. as we will see below. The pressure oehaviour exhibits
the anticipated maximum separating the stable from the unstable regions while the ell
oehaviour shows a monotonic increase with respect to Rill' This lalter behaviour may be of
some assistam:e in our altempt to understand the nature of the unstable branch (compare
with the 0 11 curve in Fig. 4). The monotonic increase in eo rel1ects the absence of any bulge
in the unstable membrane profile. This is confirmed from Fig. 2 where the profiles show
the familiar oehaviour in both the stable and unstable ranges. The corresponding thickness
distributions arc shown in Fig. 3. In the stable range the thickness tends to decrease
monotonically with respect to the axial position and. as expected. is smallest at the middle
of the cylinJer. At low pressure. in the unstable regime (curves corresponding to Rp == 0.162
and 0.173). the thickness tends to become double-valued with a very steep drop in value
ncar the cylinder end. In the remaining part of the cylinder the thickness is practically
constant. It is also interesting to observe that the cylinder thickness tends to decrease
generally with increasing pressure in the stable regime in contrast to the unstable regime
where it il1l:reases when the pressure increases. This of course is due to the large volume
that the unstable inflated cylinder tends to occupy in comparison to the stable one (compare.
for instance. curves corresponding to Rp == 0.189 and 0.162. thus roughly for the same
pressure. in both Figs 2 and 3).

For .1 relatively thick cylinder (}'IO = 1.05) the unstable solution behaviour is fun
damentally different from that of the stable one. Figure 4 shows a similar pressure dis
tribution as before with the stable and unstable ranges separated by the maximum in
pressure. However. the 0 0 behaviour now exhibits strong non-monotonicity with respect
to Rm • The corresponding cylinder profiles are shown in Fig. 5. In the stable range 0 0

increases monotonically with respect to Rm reflecting a regular stable inflation as can be
depicted from Fig. 5. There is a flattening in the cylindrical membrane almost everywhere
except near the end where the cylinder radius increases sharply. At the maximum Rp value.
0 0 reaches a maximum and starts decreasing like Rp itself when Rm increases. At this stage
the cylinder begins to exhibit a bulging part in the middle region with the flat portion
gradually receding as the pressure decreases. The emergence of the bulge gives rise to
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compressive stresses in the flat region neighbouring the ends of the cylinder. Since there is
no stretching in that region the membrane remains flat. Note that the apparently similar
flat portion in the stable proliles do not rcflcct thc prcscncc ofcomprcssive forces sincc the
cylinucr is undcrgoing stretching only. As the pressure decre.lses so docs 0,,; the bulge size
increases and the cylinder becomes thinner. Upon further decrease in pressure 0 11 incre.lses
ag'lin while the membrane uisplays similar profiles to those corresponding to the stable
branch after the bulge has completely disappeared. One may then conclude from the two
stuuies presented here (i'10 = 6 and 1.05) that a solution in the unstable regime docs not
necessarily reflect the presence of a bulge or buckling in the cylinder profile. It is also
interesting to note that the bulge is present only in the range of Rm between the maximum
and minimum 0 0 in Fig. 4.

4.2. Case 2. Tlte illfluellce olS
We now examine the influence of the aspect ratio S for various pressures and end

thicknesses. Figure 6 displays the mid-cylinder radius Rm as function of S for two inflation
p.lrameter values. namely Rp = 0.173 and 0.571. and a thickness corresponding to ,t10 = 6.
It is seen that there is a maximum S value. Sm.... beyond which no solution exists. The figure
shows that S tends to be larger for the lower pressure examined. Thus. the smaller the
pressure the more the cylinder has a tendency to stretch. It is also seen that the lower the
pressure the more the cylinder tends to grow for a given aspect ratio. The 0 11 values
corresponding to RI' = 0.173 show a monotonic increase with respect to Rm • We cannot
assert, on the basis of the present steady-state calculations. whether the two branches
separated by Sma. are in fact a stable and an unstable branch. respectively. One cannot.
however, exclude such a possibility as will be discussed below. Further insight may be
gained by examining the cylinder profiles in Fig. 7 for Rp = 0.173. Contrary to the cases of
lower ;'10 values (see below) the present profiles do not exhibit any sign of buckling
instability in the membrane at any location and for any aspect ratio.

[n the case of a thicker cylinder (i'10 = 1.5 and 1.05) the situation is much more
interesting. Figure 8 shows clearly the presence oftwo branches in the S versus Rm behaviour



78 R. E. KHA YAT ('t Ill.

s

20

10

1\
I \

I \I \,
t \

l~

•I,
/

••

8.

\,
0

0 4 B 12 16 20

Rm

Fig. 6. Dependence of mid-cylinder radius Rm on S for All. = 6 (e) Rp = 0.173 (0) 0.574. Also
shown: eo-Rm curve for Rp = 0.173.

9 -.. ......"
2~

./
/./

/'
./....

,/
15 /

:
;' 1.4:

!

I
f

~ (
L 10

\
\ I.
I
\

\ 1 2

5

~,~\~
1.0

-1.2 -0.8 -0.4 0.0 0.4 0 8

Fig. 7. Stable (--) and unstable (---) cylinder profiles for various aspect ratios. .1.'0 = 6 and
Rp =0.173.



Inflation of an elastic cylindrical membrane 79

I
I

j
I,

\
\

\
\
\

;'--j
. II ,
, I

i I

--1\ I j
\ 121 I

~~~---_J__
r /_--._....__..-..--.---~~:-~---- ..._.. !

\_.. ._J

"J

4

2

5

Q \0 20 30 40 so

Fig. K. Ocpcndcnce of R," un S for Rr '" 0.571. ).," '" 6 (curve I). ).". '" 1.05 (cunc 1), ).". '" 1.5
(curve 3). and Rr '" II.HI. ).", '" 1.5 (curve 4).

corresponding to a given pressure. Generally the two branches do not merge to form a
single curve as in Fig. 6. Curves I. 2 and 3 correspond to R11 = 0.571 for ;'11I = 6. 1.5 and
1.05. respectively (curve I has been reproduced here from rig. 6 for reference). Our aim is
to examine the inl1uence of S for the three thicknesses considered. While curve I indicates
the presence ofa maximum in S. the remaining two exhibit a split between the two branches
with Rill becoming constant beyond some S value. The two branches of curve 2 remain
separated while in curve 3 they tend to merge with some kind of irregular or oscillatory
behaviour. Note that in the latter case it is dillicult to tell whether the two branches did
indeed merge into a single branch or remained separated. It is to be remembered that the
solution procedure is practically incapable of distinguishing a solution to one branch or
another and thus may converge almost equally to either one of the two solutions regardless
of the initial guess imposed.

The case of ;'11I = 1.5 and Rp = 0.371 is even more puzzling (curve 4). Here the
fluctuation in the Rill value is clearly noticeable. The presence of the second branch is barely
detectable since for that relatively low pressure the cylinder remains practically flat. The
overall picture becomes much clearer as the actual cylinder profiles are now ex'lmined.

The influence of ;'10 is investigated by examining the cylinder prolib for u given
pressure. Figures 9 and 10 display the profiles corresponding to Rp = 0.571 for ;'111 = 0.15
und 1.05. respectively. For a thinner membrane corresponding to ;'10 = 6 the profiles are
very similur to those in Fig. 7 and therefore will not be shown; they exhibit a regular
behaviour in both the stable and unstable ranges. It is also observed (although not shown)
thut as S increases the mid-cylinder radius Rm increases in the stable regime whereas the
reverse occurs in the unstable regime. Similar behaviour is depicted in Fig. 9 for the thicker
cylinder (i. I 0 = 1.5) except that the unstable cylinder profiles tend to display some waviness
for S > 10. As the end thickness is further decreased (i'10 = 1.05) the profiles exhibit some
fundamental changes in both the stable and the unstable ranges. Indeed. Fig. 10 shows un
initial increase in Rm with S. but eventually Rm reaches a constant value for the higher S
values with a flattening of the cylinder in the middle region. The flat region tends to occupy
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a larger portion of the cylinder length as S increases. Note that the Ilat p.ut of the cylinder
is not undergoing compn:ssioll as in the case of the unstable range (sec below) since;'1 gre;'lt
deal of stretching is t'lking place ncar the cylinder ends. In the unstable range the profiles
begin to exhibit some blll,.:kling instability which becomes more pronounced as 5; increases.
It is inh.:resting to observe from the figure that the compressive !lat part between the mid
9lindl.:r rl.:gion and the ends has a radius higher than the end radius of the cylinder (compare
with Fig. 1101).

Thl.: casl.: ofa relatively low intlation pressure, namely Rfl = 0.371, leads to some further
insight regarding the mechanism of buckling instability. We have seen from Fig. 8 thut the
corresponding stable branch in curve 4 in the (S. Rm)-plane is practically trivial in the sense
that there is barely any (stable) inflation taking place at that pressure. Therefore. one may
expect that there remains only one branch to be considered. namely the second branch of
curve 4 in Fig. 8 which must be regarded as the unstable range of solutions. It turned out
th'lt there is more than just one unst.lblc solution corresponding to a point (S, Rm) of the
curve which cannot be detected on the basis of curve 4 alone. Indeed, calculations indicate
the existenct: of a degt:nt:ratt: solution beyond a certain critical value of S (approximately
S" = 20 in the present case). The first set of solutions are depicted in Fig. Ila which shows
a regular tkcreast: in Rm as S inert:.lses and eventually reaches a constant value of Rm = 4.
It is seen from tht: ligurt: that for S < S" = 20 the cylinder profiles are regular whereas for
S > S, the profiles begin to exhibit a bulge in the middle of the cylinder which becomes
narrower as S increases. Note th..t in this case the compressive flat portion of the cylinder
is at a radius equal to that of the cylinder end (compare with unstable profiles of Figs 5
and 10). The second set of solutions is displayed in Fig. II b. There docs not seem to be
any second solution for S < S". Various numerical procedures and methods were
implemented in an attempt to locate a second solution without success. The cylinder profiles
exhibit the buckling instability but this time with more than just one bulge along the
cylinder. At S = S" there appears one bulge in the cylinder. Note that due to symmetry
only h.lIf of the cylinder is shown. As S increases to 30 and 40, the bulge (actually two
bulges for the whole cylinder) becomes narrower and its maximum shifts towards the middle
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of the: cylinder. As 5 reache:s 50 there appears an additional bulge in the middk. Further
incre:ase: in 5 (5 = 80. 100. I~O) gives rise: to six bulge:s in the cylinder. :\l)te that thac is
practically no change in the: value of the: maximum radius. Additional calculations show
that the: numbe:r of bulges ke:e:ps increasing with 5.

~.3.Cast'3:S= 100andi. 10 = 1.5
The: calculations presente:d above: evidently show the influe:nce of the aspe:ct ratio on

the: cylinde:r protlks and instability. It was particularly found that several bulge:s may appear
in the: unstabk profiles for a very long cylinder. i.e. when 5 is large. For this reason it is
useful to examine the drect of the inflation parameter for a large aspect ratio. namely
5 = 100. Figure 12 shows the: cylinder proflks corresponding to various Rr values and
i' llI = 1.5. It is seen from the figure that as Rr increases the buckling instability becomes
more evident with an increase in the numbc:r of bulges. Note that for a given Rr all the:
bulges in the proflle have the same: height and that this height ge:ts larger as the pn:ssun:
increases. It is also interesting to note that as Rr increases the llat portion of the cylinder
between two successive bulges becomes wider. and eventually n:mains constant or inde
pendent of Rr in the higher Rr range where the number of bulges appears to remain equal
to four. Obviously some further calculations are needed to be more conclusive.

~A. Cas(' ~: 11/ (ltc (("s('l/c(' (/(s(r('(clt
We now consider inllation without stretch. In this case eqns (2). ((1). (9) and (10) arc

integrated subject to boundary conditions (12). (l3b). (14) and (151'1) with ~: = I. As
mentioned earlier. this problem involves a two-dimensional shooting procedun: and thcrc
fore is numerically more diflicult (Benedil.:t ('/ al.• 1979). A systematil.: and extensive study
as in the previous I.:ases of a qlinder with free ends is of I.:ourse computationally consulIling.
We have limited our investigation to three cases of S values. namely ....j == 5. 10 and 15. and
calculated thc corn;sponding Rp R", curvcs as shown in Jo'ig. 1.\. All thrcc curvcs show a
maximum in pressure separating the stable from the unstable bral1l:hes. For S = 15 the
maxilllulll in pressure is not so well deli ned as opposed to the two remaining cases. There
is a sharp drop in pressure at the maximum (R", = 1.6) at which point the pn;ssure starts

Fig. 12. Unstanle cylinder profiles for various Rr values. S = 100 and i. '" = 1.5.
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increasing again with Rill' The reason for this behaviour becomes clear when the cor
responding 91inder profiles arc examined. In the low Rill (stable) range the three curves
practically coincide for the S values considered. One may then tend to view S as some kind
of a similarity p.lr.lI11eter and that there exists'l universal Rr-RIlI curve in the low Rill range.
This is certainly not easy to confirm on the b'lsis of the governing equations (2), (6). (I.)
and ( 10) and boundary conditions (12). (l3b), (14) and (15b).

Some further insight may be gained by examining some of the cylinder profiles. Only
those corresponding to S = 15 arc presented; the two remaining cases exhibit a regular
behaviour and therefore will not be shown. It is observed from Fig. 14 that for small Rr
valucs (RI' = 0.571 and 0.7X6) the cylinder remains practically flat exccpt ncar the ends
when: there is a sharp increase in radius. As Rr increases the flattening disappears with
some buckling (RI' = 0.854). For higher RI' values bulges begin to emerge. These bulges,
howcver, arc not similar to those arising whcn stretching is present (sec Figs 5, 10-12). In
the prt:sence of stretching, the regions in the neighbourhood of the bulges tend to remain
l1at (and often uninflah:d) rel1ecting the presence of compressive forces, whereas in the
present case the neighbouring portions to a bulge arc expanded.

4.5. Case 5: NOl/-II1/iform il/itia/thickness and radius
We finally examine the inl1uence of the original thickness and/or radius non-uniformity

on the deformed cylinder. Calculations were c'lrried out for linear thickness and radius
variations with respect to initial position. Figure 15 shows the effect of thickness variation
in the stable and unstable regimes, respectively. for two original slopes (the uniform
thickness case is included for reference). The stable solution shows an important inflation
of the cylinder ncar the end (x = 0) compared to the one in the middle (x = I). It is also
observed from the figure that the steeper the original thickness variation. the less the cylinder
tends to inflate. The corresponding unstable solutions arc somewhat surprising. The figure
shows that. the huger the slope in the original (undeformed) thickness the higher the mid
cylinder bulge becomes. A similar but opposite effect occurs when the initial radius increases
linearly with position as can be observed from Fig. 16. The stable solution shows a final
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mdius increasing .tS a func.:tion of the initial radius. The unstable solution exhibits the
reverse el1i:ct. When both the initial thickness and mdius increase linearly with position the
resulting profiles and thickness distributions arc shown in Fig. 17. In this case the clTect on
the deformed cylinder due to the variation in initial thickness is counter-bat.tnced by that
due to the variation in initi.l1 radius. Compare the (st'lble) mdius distributions of Fig. 17
to those of Fig. 15. Clearly. the cylinder in the former case tends to inl1ate less than in the
laller case due to the addition.t1 el1i:ct of initial thickness. Similar arguments apply to the
rest of the unstable proliles.

5. CONCLUSION

In this work the balance equations arc derived for an clastic solid continuum. The
governing equations arc genemlized to include variable initial thickness and mdius in the
undeformed st.lte. The resulting equations arc bulkier to handle than when the thickness
and radius arc originally uniform. with the original degree of non-linearity remaining
unchanged. Although various techniques have been developed for the numerical solution
of the problem. the presence of two boundaries. as we observed. requires the usc of a
shooting procedure which often failed given the non-linearity of the governing equations.
The problem becomes particularly dillicult when more than one shooting p.lrameter is
involved. In this case a finite-dilTerence integration procedure can be more adequate than
an initial-value-problem numerical solver such as Runge-KUlla. However. problems of
stability and convergence inherent to the finite-difference scheme can easily arise because
of the non-Iinearities. There is therefore no simple answer to these difficulties and a com
bination of more than just one integration and one shooting scheme must be resorted to in
our attempt to obtain the stable and unstable inflation profiles. The present calculations
are carried out using finite-difference and sixth-order Runge-KUlla integration procedures
and a modified Newton-Raphson shooting scheme with the latter.

The numerical calculations show that the unstable solution does not always exhibit
the presence of a bulge in the deformed cylinder. We first examined the influence of the
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thi<:knes~ at the end~ of the cylinder on the deformed profiles. When the cylinder ends are
relatively thin there is no bulge in the cylinder profiles (Fig. 2). For thi<:ker ends the bulge
in the cylinder becomes evident (Fig. 5) and its height increases as the inflation pressure
dc<:re~tses. The inlluence of the aspect ratio S has also been investigated. It is observed that.
for a given pressure. there exists a critical aspect ratio beyond which a bulge begins to
appear in the unstable profile. The bulge is found to become narrower the larger the aspect
ratio. that is the longer the cylinder (Fig. Ila). Moreover. a second set of solutions shows
that the number of bulges increases as S increases (Fig. II b). Thus. long cylinders tend to
allow several bulges in their unstable inflation mode. Thc number of bulges may also
innease when the inllation pressure itself is varied (Fig. 12). This is also particular to long
cylinders. Finally we examined the influence of undeformed thickness and/or r41dius (linear)
variation on the inflated cylinder. The resulting stable and unstable profiles exhibited exactly
opposite behaviours. For instance. for a variable initial thickness. the stable solution showed
a pronounced growth in cylinder radius where the membrane was originally thinnest.
whereas the unstable profile gave rise to ~I bulge where the cylinder was originally thickest
(see Fig. 15).

Although extensive work has been previously carried out to determine instability
conditions for inflated structures. actual c~llculations such as the ones presented here are
Sl:arce. It is obvious. from the present investigation. that there remains a wide range of
other constitutive models. inflation conditions and geometries which must be considered if
further understanding of the non-linear buckling were to be achieved. For instance. based
on a comparative study conducted on the neo-Hookean and Mooney models (Kydnoiefs
and Spencer. 1969) it was found that only the former model gave rise to a bulge in the
unstable profiles. Thus. since the present calculations are based on the neo-Hookean
constitutive model for the free inflation ofa rubber thin cylinder. the results above are likely
to be altered if a constitutive model such as Mooney's is adopted. Another interesting aspect
which may be given further consideration is the emergence of several bulges along the
inflated cylinder. It would be desirable. for instance. to determine a wider range of critical
Rp and S values beyond which the number of bulges increases. One may also examine the
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effect of non-linear variations of thickness and radius in the undeformed state on the final
cylinder profiles. These considerations will undoubtedly require extensive calculations which
in turn may not be all that obvious given the numerical difficulties discussed above.
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